Das GesundheitsPortal für innovative Arzneimittel, neue Therapien und neue Heilungschancen
Kombipackung gegen Krebs
Nanopartikel mit multifunktioneller Wirkstoffvorstufe für die synergistische Tumor-Therapie
Für eine effiziente und nebenwirkungsarme Krebstherapie ist es wichtig, dass der Wirkstoff in hoher Konzentration in den Tumor gelangt und nur dort aktiv ist. In der Zeitschrift Angewandte Chemie stellen Wissenschaftler einen neuen Ansatz vor: Zwei synergistische Wirkstoffkomponenten werden zu einem Dimer verknüpft. Als Dimer lassen sie sich in außergewöhnlich hoher Konzentration in polymere Nanotransporter füllen. Die Spaltung der Bindung innerhalb der Tumorzellen aktiviert die Komponenten. Zudem ermöglichen sie zwei verschiedene bildgebende Verfahren.
Polymere Mizellen sind die wichtigsten Nanotransporter in der Tumortherapie. Trotz verbesserter Transportsysteme sind noch viele Herausforderungen zu meistern: zu geringe Beladung, vorzeitige Freisetzung des Wirkstoffs, keine Möglichkeit, die Verteilung des Wirkstoffs zu verfolgen, begrenzte Akkumulierung des Wirkstoffs im Tumorgewebe. Longjiang Zhang, Guizhi Zhu, Xiaoyuan Chen und ihr Team gehen das Problem von der anderen Seite an: Statt des Transporters verbessern sie die Ladung.
Dazu wählten die Wissenschaftler von den National Institutes of Health, Bethesda (USA) sowie der Universität Nanjing (China) einen einfachen, aber wirkungsvollen Trick: Sie verknüpften zwei Wirkstoffe – Camptothecin sowie einen speziellen Photosensibilisator – zu einem Dimer. Mizellen lassen sich sehr effizient mit einer außergewöhnlich hohen Menge der dimeren Fracht (59 %) beladen. Die Dimere sind weniger hydrophil als ihre Einzelbausteine und fügen sich damit besser in das hydrophobe Innere der Mizellen ein. Aus dem gleichen Grund tritt das Dimer während der Reise der Mizellen durch die Blutgefäße kaum vorzeitig aus. Dies verringert unerwünschte Nebenwirkungen.
Die beiden Bausteine des zunächst inaktiven Dimers sind über eine Disulfid-Brücke verknüpft, die erst in einer von Glutation abhängigen Reaktionskaskade gespalten werden kann. Glutathion, ein kleines Eiweiß, liegt in vielen Tumoren in hoher Konzentration vor. Beide Wirkstoffe werden erst aktiviert, wenn das Dimer in den Tumorzellen gespalten wird.
Wird die Region des Tumors mit Laserlicht bestrahlt, wandelt der Photosensibilisator normalen Sauerstoff in hochreaktiven Singulett-Sauerstoff um, der die Zelle schädigt. Zudem kommt es zu einem Sauerstoffmangel. Camptothecin inhibiert zum einen Faktor 1α, der Zellen hilft, einen Sauerstoffmangel zu überstehen, und verstärkt so die cytotoxischen Effekte des Photosensibilisators. Zum anderen schädigt es die DNA der Tumorzellen.
Darüber hinaus wirkt der Photosensibilisator als Fluoreszenzfarbstoff und kann außerdem das Radioisotop Kupfer-64 binden, was eine Visualisierung sowohl durch Fluoreszenz-Bildgebung als auch über eine Positronen-Emissions-Tomographie (PET) ermöglicht. Eine quantitative PET erlaubt ein exaktes Monitoring des Dimers sowie die Bestimmung seiner Pharmakokinetik und Biodistribution in vivo.
Versuche an Zellkulturen und an Tumormäusen ergaben, dass der neue Ansatz bei wesentlich weniger Nebenwirkungen Transport und Akkumulation der Wirkstoffe in Tumoren signifikant verbesserte und Tumore deutlich stärker schrumpfen ließ als bei Gabe der unverknüpften Einzelkomponenen.
Angewandte Chemie: Presseinfo 15/2018
Autor: Xiaoyuan Chen, National Institute of Biomedical Imaging and Bioengineering (NIH), Bethesda, MD (USA), https://www.nibib.nih.gov/about-nibib/staff/xiaoyuan-chen
Link zum Originalbeitrag: https://doi.org/10.1002/ange.201801984
Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.
Weitere Informationen:
http://presse.angewandte.de