Das GesundheitsPortal für innovative Arzneimittel, neue Therapien und neue Heilungschancen
Ungesundes Sitzen vermeiden: Stuhl erkennt Sitzposition und motiviert zur Änderung der Körperhaltung
Langes Sitzen erhöht das Risiko von Herz-Kreislauf- und Stoffwechselerkrankungen. Wer dazu noch dauerhaft in der gleichen Position verharrt oder in einer ungünstigen Körperhaltung Platz nimmt, riskiert Verspannungen und eine Degeneration der Bandscheiben. Das Labor für Fertigungssysteme der TH Köln unter Leitung von Prof. Dr. Ulf Müller entwickelt deshalb im Forschungsprojekt SensA-Chair gemeinsam mit der Bergischen Universität Wuppertal und der Deutschen Sporthochschule Köln sowie Partnern aus der Industrie ein System, das eine anatomisch günstige Sitzhaltung unterstützt.
SensA-Chair umfasst mehrere Komponenten: So sollen sich die Sitzfläche und Rückenlehne automatisch an die individuelle Kontur der Nutzerinnen und Nutzer anpassen, um die körperliche Belastung abzumildern. Besonders beim statischen Sitzen – dem langen Verharren in der gleichen Haltung – wirken starke Kräfte auf den Körper. Daher soll der Stuhl zu einem dynamischen Sitzen anregen, das heißt, die Position im Stuhl wird in bestimmten Zeitabständen gewechselt und die Beanspruchung von Organismus und Bewegungsapparat deutlich reduziert. Das Forscherteam der TH Köln entwickelte im Projekt ein System aus Sensoren und Aktoren, das verschiedene Sitzhaltungen der Person im Stuhl erkennt. Mittels der Aktoren wird ein taktiler Reiz in Form eines Drucks an verschiedenen Stellen der Sitzfläche erzeugt, um zu einem Sitzhaltungswechsel anzuregen.
Stuhl erkennt typische Sitzpositionen
„Der erste Schritt auf dem Weg zum gesünderen Sitzen ist es, die Art und Weise zu erfassen, wie gesessen wird. Mit unseren Sensoren können wir bis zu 14 typische Sitzpositionen erkennen. In Zusammenarbeit mit der Deutschen Sporthochschule haben wir diese Haltungen abhängig vom Grad ihrer Belastung für den Körper in sechs Klassen eingeteilt“, erläutert Müller. Die Einteilung in sechs Klassen – Klasse 1 für eine geringe und Klasse 6 für die höchste Belastung – erlaubt es, die Beanspruchung zu errechnen und einen Algorithmus für den richtigen Zeitpunkt zum Ändern der Sitzposition zu entwickeln.
Das System erkennt die Sitzposition und misst die Zeit, die die Person in dieser verbleibt. So kann ein beanspruchungsgerechtes Sitzen gesteuert und somit dynamisches Sitzen gefördert werden. „Bei einer Position der Klassen 1 und 2 ist es in Ordnung, sich über acht Minuten nicht zu bewegen; bei Positionen der anderen Klassen sollte man spätestens nach vier Minuten seine Körperhaltung ändern“, so Müller.
Aktoren motivieren zur Änderung der Sitzhaltung
Sofern die Person nicht schon vor dem Zeitlimit selbstständig die Sitzposition ändert, geben die im Stuhl verbauten Aktoren kleine physische Drücke durch das Sitzpolster, die dazu anregen, die Sitzposition zu ändern. Tut sie bzw. er dies nicht, steigt die Intensität der Drücke, bis es zu einer Sitzänderung kommt. Schmerzen muss man allerdings nicht befürchten: „Auch die stärkste Stufe der Druckkraft fällt immer noch so gering aus, dass sie nicht bewusst wahrgenommen wird, den Menschen aber trotzdem dazu bringt, sich zu bewegen“, erläutert Müller. „Das ist wichtig, damit die bzw. der Betroffene nicht aus den Gedanken gerissen wird und sich manipuliert fühlt. Dies würde zu einer Ablehnung des Systems führen.“ Durch dieses intelligente System verändert die sitzende Person ihre Position im Stuhl im Tagesverlauf kontinuierlich, was die Beanspruchung für den Körper verringert.
Aktor aus Formgedächtnislegierung
Eine besondere Herausforderung für das Team um Prof. Müller waren das Design, die Auslegung und Umsetzung des Aktors, der die Druckkraft zur Veränderung der Sitzposition gibt. „Aufgrund der Polsterung des Stuhls war es wichtig, den Aktor so zu konstruieren, dass der Druck auch noch durch Polstermaterial wahrzunehmen ist. Entsprechend stark muss er daher sein“, sagt Müller. Die Wahl fiel auf einen Aktor aus Formgedächtnislegierung, der im Vergleich zu konventionellen Lösungen eine sehr hohe Kraft aufbringen kann und zudem geräuschlos arbeitet. Die Konstruktion des Aktors musste darüber hinaus stabil genug für das Körpergewicht eines Menschen sein und kompakt genug, um in einen Bürostuhl eingebaut zu werden. Die Industriepartner bauen jetzt auf Basis der Forschungsergebnisse einen Prototyp des Stuhls.
Forschungsprojekt
Das Forschungsprojekt SensA-Chair wurde von 2016 bis 2018 vom Bundesministerium für Bildung und Forschung (BMBF) im Rahmen des Programms KMU-innovativ gefördert. Projektpartner waren die Brehmer GmbH & Co. KG, die Generationdesign GmbH, die haidermetall Eduard Haider GmbH & Co KG, die Bergische Universität Wuppertal, die Deutsche Sporthochschule Köln sowie die Fakultät für Anlagen, Energie- und Maschinensysteme der TH Köln.
Bildmaterial zur honorarfreien Verwendung bei Copyright-Angabe stellen wir Ihnen gerne zur Verfügung. Bitte wenden Sie sich dazu an pressestelle@th-koeln.de.
Die TH Köln bietet Studierenden sowie Wissenschaftlerinnen und Wissenschaftlern aus dem In- und Ausland ein inspirierendes Lern-, Arbeits- und Forschungsumfeld in den Sozial-, Kultur-, Gesellschafts-, Ingenieur- und Naturwissenschaften. Zurzeit sind mehr als 26.000 Studierende in über 90 Bachelor- und Masterstudiengängen eingeschrieben. Die TH Köln gestaltet Soziale Innovation – mit diesem Anspruch begegnen wir den Herausforderungen der Gesellschaft. Unser interdisziplinäres Denken und Handeln, unsere regionalen, nationalen und internationalen Aktivitäten machen uns in vielen Bereichen zur geschätzten Kooperationspartnerin und Wegbereiterin. Die TH Köln wurde 1971 als Fachhochschule Köln gegründet und zählt zu den innovativsten Hochschulen für Angewandte Wissenschaften.