Das GesundheitsPortal für innovative Arzneimittel, neue Therapien und neue Heilungschancen

Künstliche Intelligenz erkennt Muster im Verhalten

Neurowissenschaftler entwickeln KI-Tool zur Analyse und Katalogisierung von Verhaltensweisen

Forschende der Carnegie Mellon University (USA), des Universitätsklinikums Bonn und der Universität Bonn haben eine Open-Source-Plattform mit dem Namen A-SOiD entwickelt, die benutzerdefiniertes Verhalten lernen und erkennen kann, und zwar nur aus Videos. Die Ergebnisse der Studie wurden jetzt im Fachmagazin „Nature Methods“ veröffentlicht.

„Diese Technik eignet sich hervorragend zum Erlernen von Klassifizierungen für eine Vielzahl tierischer und menschlicher Verhaltensweisen“, so Dr. Eric Yttri, Eberly, Außerordentlicher Professor für Biologische Wissenschaften an der Carnegie Mellon University. „Das funktioniert nicht nur bei Verhaltensweisen, sondern bei allem, wenn es erkennbare Muster gibt: Aktienmärkte, Erdbeben, Proteomik. Es ist eine leistungsstarke Mustererkennungsmaschine.“

Anders als viele Programme der künstlichen Intelligenz (KI) ist A-SOiD keine Blackbox. Stattdessen erlaubten die Forschenden dem Programm, neu zu lernen, was es falsch gemacht hat. Sie trainierten das Programm zunächst mit einem Bruchteil des Datensatzes, wobei der Schwerpunkt auf den schwächeren Glaubenssätzen des Programms lag. Wenn das Programm nicht sicher war, verstärkte der Algorithmus die Glaubenssätze dieser Trainingsdaten.

Da A-SOiD gelehrt wurde, sich auf die Unsicherheit des Algorithmus zu konzentrieren, anstatt alle Daten gleich zu behandeln, laut Alex Hsu, ein kürzlich promovierter Absolvent der Carnegie Mellon University, vermeidet es gängige Verzerrungen, die bei anderen KI-Modellen auftreten.

KI-Tool wird jeder Klasse in einem Datensatz gerecht

„Es ist eine andere Art der Dateneingabe“, sagte Hsu. „Normalerweise geben die Nutzer den gesamten Datensatz der gesuchten Verhaltensweisen ein. Sie verstehen selten, dass die Daten unausgewogen sein können, das heißt es könnte ein gut repräsentiertes Verhalten sowie ein schlecht repräsentiertes Verhalten in ihrem Satz geben. Diese Verzerrung könnte sich dann vom Vorhersageprozess auf die experimentellen Ergebnisse übertragen. Unser Algorithmus kümmert sich um den Datenausgleich, indem er nur von schwächeren Daten lernt. Unsere Methode ist besser in der Lage, jede Klasse in einem Datensatz gerecht zu repräsentieren.“

Da A-SOiD unter Aufsicht trainiert wird, kann es sehr genau sein. Mit einem Datensatz kann es den Unterschied zwischen dem normalen Zittern einer Person und dem Zittern eines Parkinson-Patienten feststellen. Es dient auch als ergänzende Methode zu der unbeaufsichtigten Verhaltenssegmentierungsplattform B-SOiD, die vor zwei Jahren veröffentlicht wurde. A-SOiD ist nicht nur ein effektives Programm, es ist auch leicht zugänglich, kann auf einem normalen Computer ausgeführt werden und ist als Open Source auf GitHub verfügbar.

A-SOiD ist in der Wissenschaft für alle zugänglich

Jens Tillmann, ein Postdoktorand der Universität Bonn am Universitätsklinikum Bonn, sagt, dass die Idee, dieses Programm für alle Forschende offen zu halten, Teil seiner Wirkung sei. „Dieses Projekt wäre ohne die offene wissenschaftliche Einstellung, die unsere beiden Labore, aber auch die gesamte Gemeinschaft der Neuroethologie in den letzten Jahren an den Tag gelegt haben, nicht möglich gewesen“, so Tillmann. „Ich bin begeistert, Teil dieser Gemeinschaft zu sein und freue mich auf zukünftige gemeinsame Projekte mit anderen Experten auf diesem Gebiet.“

Yttri und Martin K. Schwarz, Projektleiter am Universitätsklinikum Bonn und Mitglied der Transdisciplinary Research Area (TRA) „Life & Health“ an der Universität Bonn, planen, A-SOiD in ihren eigenen Labors einzusetzen, um die Beziehung zwischen Gehirn und Verhalten weiter zu untersuchen. Yttri will A-SOiD in Verbindung mit anderen Werkzeugen einsetzen, um die neuronalen Mechanismen zu untersuchen, die spontanen Verhaltensweisen zugrunde liegen. Schwarz wird A-SOiD in Verbindung mit anderen Verhaltensmodalitäten für eine feinkörnige Analyse bekannter Verhaltensweisen in sozialen Interaktionen nutzen.

Sowohl Yttri als auch Schwarz hoffen, dass A-SOiD von anderen Forschern aus verschiedenen Disziplinen und Ländern genutzt werden wird. „A-SOiD ist eine wichtige Entwicklung, die einen KI-gestützten Einstieg in die Verhaltensklassifikation ermöglicht und damit eine hervorragende, einzigartige Möglichkeit bietet, den kausalen Zusammenhang zwischen Gehirnaktivität und Verhalten besser zu verstehen“, so Schwarz. „Wir hoffen auch, dass die Entwicklung von A-SOiD als effizienter Auslöser für künftige gemeinsame Forschungsprojekte mit Schwerpunkt auf der Verhaltensforschung in Europa, aber auch jenseits des Atlantiks, dienen wird.“

Link zu A-SOiD: https://github.com/YttriLab/A-SOID

Förderung:

Die Forschung wurde von der Deutschen Forschungsgemeinschaft (DFG) gefördert; Projekt-ID 227953431 – SFB 1089 der Universität Bonn.

Publikation: Jens F. Tillmann, Alexander I. Hsu, Martin K. Schwarz and Eric A. Yttri; A-SOiD, an active learning platform for expert-guided, data efficient discovery of behavior; Nature Methods; DOI: https://doi.org/10.1038/s41592-024-02200-1